Involutive Heegaard Floer Homology
نویسندگان
چکیده
Using the conjugation symmetry on Heegaard Floer complexes, we define a three-manifold invariant called involutive Heegaard Floer homology, which is meant to correspond to Z4-equivariant Seiberg-Witten Floer homology. Further, we obtain two new invariants of homology cobordism, d and d̄, and two invariants of smooth knot concordance, V 0 and V 0. We also develop a formula for the involutive Heegaard Floer homology of large integral surgeries on knots. We give explicit calculations in the case of L-space knots and thin knots. In particular, we show that V 0 detects the non-sliceness of the figure-eight knot. Other applications include constraints on which large surgeries on alternating knots can be homology cobordant to other large surgeries on alternating knots.
منابع مشابه
Involutive Heegaard Floer Homology and Plumbed Three-manifolds
We compute the involutive Heegaard Floer homology of the family of threemanifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orien...
متن کاملNonseparating spheres and twistedHeegaard Floer homology
Heegaard Floer homology was introduced by Ozsváth and Szabó [16]. For nullhomologous knots, there is a filtered version of Heegaard Floer homology, called knot Floer homology; see Ozsváth and Szabó [14] and Rasmussen [18]. Basically, if one knows the information about the knot Floer homology of a knot, then one can compute the Heegaard Floer homology of any manifold obtained by Dehn surgery on ...
متن کاملHeegaard Floer homology of broken fibrations over the circle
This article is the first in a series where we investigate the relations between Perutz’s Lagrangian matching invariants and Ozsváth-Szabó’s Heegaard Floer invariants of three and four manifolds. In this paper, we deal with the purely Heegaard Floer theoretical side of this programme and prove an isomorphism of 3–manifold invariants for certain spinc structures where the groups involved can be ...
متن کاملA tour of bordered Floer theory
Heegaard Floer theory is a kind of topological quantum field theory, assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented 4dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal struc...
متن کاملCombinatorial Cobordism Maps in Hat Heegaard Floer Theory
In a previous paper, Sarkar and the third author gave a combinatorial description of the hat version of Heegaard Floer homology for three-manifolds. Given a cobordism between two connected three-manifolds, there is an induced map between their Heegaard Floer homologies. Assume that the first homology group of each boundary component surjects onto the first homology group of the cobordism (modul...
متن کامل